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Density-functional theory for vacancies in hard-sphere crystals

Benito Groh
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 15 December 1999!

The equilibrium vacancy concentration in solids can be computed from density-functional theory~DFT! if
allowance is made for density profiles with less than one particle per lattice site. For the fundamental-measure
theory ~FMT!, this approach predicts reasonably small vacancy concentrations in hard sphere crystals, in
contrast to earlier DFTs. Using an asymptotic analysis of the FMT functional, it is shown that the number of
vacancies depends exponentially on the distance to the close packing density, as expected from heuristic
arguments. The prefactor of the exponential is calculated for three recently suggested variants of the theory,
using density profiles obtained from a quasifree minimization. Extrapolation of the asymptotic behavior to the
melting density yields good agreement with other estimates and computer simulation results.

PACS number~s!: 61.20.Gy, 61.50.Ah, 61.72.2y
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I. INTRODUCTION

In the last two decades density-functional theory~DFT!
has been established as a unified description of the liquid
solid phases of simple model systems like the hard-sph
fluid. Although based on results of liquid state theory such
correlation functions, DFT predicts the location of the free
ing transition as well as the solid structure with satisfact
accuracy. Among the large number of DFT versions dev
oped for hard spheres@1#, the newest and most successful
the fundamental-measure theory~FMT! of Rosenfeld and co-
workers@2,3#. While the general structure of the FMT func
tional has deep connections to scaled particle theory
Percus-Yevick theory, its detailed form has recently be
rederived and slightly modified by enforcing the correct b
havior in the limit of zero-dimensional cavities that can ho
only one particle@4,5#. Thus it is not too surprising that FMT
performs extremely well in describing the hard-sphere cr
tal in which particles essentially move in small cages form
by their neighbors. We recently showed that FMT rep
duces such subtleties as the deviation of the density p
from a Gaussian shape and the next-to-leading term of
free energy in the close packing limit in fair agreement w
computer simulations@6#. The latest FMT version@5# actu-
ally gives more accurate free energies for the solid than
the liquid, for which it reduces to the Percus-Yevick resu

In this work we address another subtle effect, which m
be important for the determination of elastic constants@7–9#
and high precision free energy measurements@10,11#,
namely, the small but finite equilibrium concentration of v
cancies in the hard-sphere crystal. This means that on a
age there is less than one particle per lattice site. This si
tion is included in the DFT formalism in a natural way b
taking into account non-normalized density peaks. Howe
when applied to the Ramakrishnan-Yussouff DFT@12,13#,
which represents the first and simplest successful theor
freezing, the relaxation of the normalization condition pr
duces unphysically high vacancy concentrations@14#. But
also more sophisticated variants which employ weigh
densities suffer from the same shortcoming@15#.

Motivated by this failure, a different approach to the v
cancy problem within DFT has been suggested@16#. The
PRE 611063-651X/2000/61~5!/5218~5!/$15.00
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basic idea is to insert a density profiler(r ) with a vacancy at
a fixed lattice site into the functional and to account for t
configurational entropy of the vacancy by an additional ter
For the Lennard-Jones fluid the results seemed indeed q
reasonable, while the hard-sphere vacancy concentra
comes out about five orders of magnitude too small. A sim
lar approach has been applied to films of hard disks i
periodic potential modeling absorbed monolayers@17#. How-
ever, in our opinion this method is not well justified. Th
value of the functional at a nonequilibrium density distrib
tion with a localized vacancy has no physical meaning an
is not necessarily related to the free energy of vacancy
mation.

It has been claimed@18,19# that FMT is capable of pre-
dicting the correct vacancy concentration if non-normaliz
peaks are used. But the corresponding short paragrap
Ref. @19# is, in our opinion, rather obscure and incorrect.
the present paper we therefore carefully study the vaca
problem within FMT. We find that indeed it yields the co
rect order of magnitude for the number of vacancies as w
as the correct density dependence in the close packing li

II. FUNDAMENTAL MEASURE THEORY

We first recapitulate the basic equations of t
fundamental-measure functional for a one-component h
sphere system. One defines a set of weighted densitiesna(r )
which follow from the density profiler(r ) as

na~r !5E d3r 8wa~r2r 8!r~r 8! ~1!

with weight functionswa whose range is the particle radiu
s/2. Their explicit form is

w3~r !5Q~s/22r !, ~2!

w2~r !5d~s/22r !, ~3!

wV2~r !5 r̂d~s/22r !, ~4!

wT2~r !5 r̂ i ^ r̂ jd~s/22r !, ~5!
5218 ©2000 The American Physical Society
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wherer̂ is a unit vector,Q the Heaviside step function, an
wV2 andwT2 give rise to vector and tensor weighted den
ties, respectively. The excess part of the free energy fu
tional is expressed as

bFex@r~r !#5E d3r(
i 51

3

f i„na~r !… ~6!

where the free energy densitiesf i are functions of the
weighted densities only and are given as

f152
n2

ps2
ln~12n3!, f25

n2
22nV2

2

2ps~12n3!
,

f35
f 3~na!

~12n3!2
. ~7!

The best choice for the functionf 3 has been subject to som
discussion recently. We will consider three variants here.
empirical correction to the original FMT@2#,

f 3
FMT15

~n2
22nV2

2 !3

24pn2
3

, ~8!

suggested by Rosenfeldet al. @19#, enabled the first success
ful description of the solid phase. A new derivation of FM
based on the requirement of correctly describing the ze
dimensional limit yielded@4#

f 3
FMT25

9

8p
detnT2 ~9!

as an approximation to a more complicated result wh
could not be expressed in terms of weighted densities
Ref. @6# we showed that FMT2 is superior to FMT1 whe
applied to high density crystals. A third version,

f 3
FMT35

3

16p
@nV2•nT2•nV22n2nV2

2 2tr~nT2
3 !1n2 tr~nT2

2 !#,

~10!

has recently been found by Tarazona after reexaminatio
the mentioned derivation@5#. Finally, the complete func-
tional is obtained by adding the ideal gas contribution,

bFid@r~r !#5E d3rr~r !@ ln r~r !l321#, ~11!

wherel is the thermal de Broglie wavelength.
In a solid the density profile consists of identical dens

peaksrD(r ) centered at the lattice sitesR:

r~r !5(
R

rD~r2R!, ~12!

which implies a corresponding decomposition of t
weighted densities:

na~r !5(
R

nD
(a)~r2R!. ~13!
-
c-

n

o-

h
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III. CALCULATION OF THE VACANCY
CONCENTRATION

While in a perfect crystal the individual peaks are norm
ized to 1, the existence of vacancies can be incorporated
the DFT by allowing for a different normalization:

E d3rrD~r !5
N

Ns
5h0512xv , ~14!

whereN andNs are the number of particles and lattice site
h0 is the average occupancy of the sites, andxv the vacancy
concentration. Note that in this approach the vacancies
spread over the whole system in thermodynamic equilibri
and not localized at specific sites. The vacancy concentra
also enters the functional via the lattice constant, since
fixed bulk densityrb5N/V the nearest neighbor distance
R5R0h0

1/3, whereR0 is the nearest neighbor distance in t
corresponding perfect crystal@R05(A2/rb)1/3 for the fcc lat-
tice assumed here#. By minimizing with respect to allrD(r )
irrespective of their normalization, but under the constra
of fixed rb , the equilibrium vacancy concentration can
determined.

Under the assumption of Gaussian density peaks

rD~r !5h0S a

p D 3/2

e2ar 2
, ~15!

this has been carried out before@14# using the
Ramakrishnan-Yussouff DFT, which historically was th
first to describe successfully the freezing of hard sphe
@12,13#. However, within this approximation, which corre
sponds to a second-order expansion of the functional aro
the fluid state, a far too high vacancy concentrati
(;10%) was found at the melting density. We have co
firmed this result and extended the calculations to hig
densities. It is found that the occupancyh0 increases and
crosses unity atrb* 5rbs351.405, implyingmore than one
particle per site on average. Even worse, the close pac
limit of the Ramakrishnan-Yussouff theory is lost if this a
ditional freedom is taken into account. That means that
peak widthD51/Aa still decreases with increasingrb but
no longer goes to zero when the maximum possible den
rb* 5A2 is approached@6#. In Ref. @15# a number of other
DFT versions have been subjected to the same proced
None of them yielded a reasonably small order of magnitu
for the vacancy concentration at its respective melting d
sity.

On the other hand, it has been claimed that FMT is
pable of predicting the correct value ofxv @18,19#. We at-
tempted to confirm this by numerical calculation ofxv . Un-
fortunately this was prevented by its smallness, which le
to numerical problems during the minimization because
very weak dependence of the functional onxv in the inter-
esting region is lost in numerical noise due to rounding
rors. But in the following we present an asymptotic analy
of the problem near the close packing limit, along the lin
of our earlier investigation of the perfect crystal@6#, which
shows that the FMT result forxv is indeed in agreement with
the physical expectation.
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We assume a general, spherical symmetric density pro
with the scaling form

rD~r !5
h0

a3
r0S r

aD with E d3s r0~s!51, ~16!

where a5R2s is the free distance between sites, whi
tends to zero in the close packing limit. Its relation to the fr
distancea0 of a defect-free crystal with the same bulk de
sity is

a5~s1a0!h0
1/32s5a02 1

3 xv~s1a0!1O~xv
2s!.

~17!

We now adopt the strategy of minimizing first with respe
to xv for fixed rb ~i.e., fixed a0) and fixed profiler0(s),
assuming thata0 /s, a/s, andxv are small quantities. After-
ward the optimum profile shaper0(s) follows by a second
minimization. The leading contribution to the ideal free e
ergy is

bFid /N54pE
0

`

ds s2r0~s!@ ln r0~s!21#23 ln~a0 /l!

1xvs/a01•••. ~18!

The dots denote terms of order (xvs/a0)2 that will turn out
to be neglegible. As shown in detail in Ref.@6#, the weighted
densitiesnD

(a)(r ) have nontrivial values only in a small rang
of width proportional toa around r 5s/2 and can be ex-
panded in powers ofa for fixed t5(r 2s/2)/a. For the two
scalar weighted densities one finds (d5a/s)

nD
(3)~ t !5h0@n30~ t !1n31~ t !d1•••#, ~19!

nD
(2)~ t !5

h0

a
@n20~ t !1n21~ t !d1•••#, ~20!

with

n30~ t !54pS Q~2t !E
0

2t

ds s2r0~s!1E
utu

`

ds sr0~s!~s2t ! D ,

~21!

n31~ t !52pE
utu

`

ds sr0~s!~ t22s2!, ~22!

n20~ t !52pE
utu

`

ds sr0~s!, ~23!

n21~ t !522tn20~ t !. ~24!

In any coordinate system with itsz axis aligned withr the
vector weighted density is

nD
(V2)~ t !5 r̂

h0

a
@n20~ t !1n21~ t !d1•••# ~25!

and the tensor weighted density
e,

e

t

-

nD
(T2)5S nD

(11) 0 0

0 nD
(11) 0

0 0 nD
(33)
D ~26!

with

nD
(11)~ t !522

h0d

s
n31~ t !1•••, ~27!

nD
(33)~ t !5nD

(2)~ t !22nD
(11)~ t !. ~28!

Contributions from different lattice sites must be transform
to a common reference frame before they are added to
total vector and tensor weighted densities.

The spatial integration in Eq.~6! over the Wigner-Seitz
cell of the lattice is now split into two parts~see Fig. 6 in
Ref. @6#!: region A where the total weighted densities a
dominated by the contributions from one site, and regionB
around the midpoints between two neighboring sites, wh
both sites contribute to the weighted densities. Power la
for the d dependence of the individual contributionsF i j
5N21* jd

3r f i with i 51,2,3 andj 5A,B are given in Ref.
@6#. Here we are interested in thexv dependence of the domi
nant terms.

Let us first consider

F1A52
Ns

N E
A
d3r

nD
(2)~r !

ps2
ln@12nD

(3)~r !#. ~29!

Extending the integration region to a full spherical shell
troduces no error in the leading term, so that one has

F1A52E
2`

`

dt n20~ t !ln@12h0n30~ t !#1O~d!

511
xv

12xv
ln xv , ~30!

where ]n30/]t5n20 and n30(t→`)50, n30(t→2`)51
have been used. Thus the leading term is independent o
profile and nonanalytical atxv50. It can be shown that the
O(d) term fromF1A exactly cancels with the correspondin
term fromF2A for all xv when the integration region is a fu
sphere. However, the missing caps in the directions to the
nearest neighbors give rise to an additionalO(d) correction
F1A

cap . Taking into account all contributions up toO(d) we
have in FMT3

bFex

N
511xv ln xv1F2B

001xvF2B
01

1S a0

s
2

xv

3 D ~F1B
001F2B

101F3B
001F1A

cap! ~31!

where

F i j
nm5

]n1m

]an]xv
m

F i j ua50,xv50 ~32!
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and terms of the ordersa0
2, a0xv , xv

2 ln xv have been ne-
glected.@Neglected terms ofO(d2) will be important if they
behave asc11c2xv(ln xv)

2 for small xv . There are indica-
tions that this is indeed the case for the regionA contribu-
tions when Gaussian profiles are used, but not for the ac
minimum profile which ultimately decays faster than
Gaussian.# The only change in FMT2 is thatF3B

00 drops out
becauseF3B;d3 in this version@6#. In FMT1 F3B;d21 is
the dominant term. As shown in Ref.@6# it is minimized for
profiles r0(s) with a cutoff at s51/2, for which regionB
~and the missing caps of regionA) do not exist. For such
profiles only the first two terms in Eq.~32! remain.

Minimization of the total free energy with respect toxv
for fixed a0 results in

xv5expS K2
s

a0
D ~33!

with KFMT1521, KFMT25212F2B
011(F1B

001F2B
10

1F1A
cap)/3, and KFMT35KFMT21F3B

00 /3. Equation ~33! is
our central result.

The exponential decay of the vacancy concentration i
agreement with the following estimate. The free energy
vacancy formation is approximately the workpV/N required
to enlarge the crystal by one lattice site against the exte
pressure, which leads toxv.exp(2bp/rb) @20#. Together
with the asymptotic formbp/rb5s/a01••• for the equa-
tion of state, predicted by cell theory as well as FMT, E
~33! is recovered.

Sincexv is exponentially smaller thana0 /s, all xv depen-
dent terms can be neglected for the calculation of the o
mum peak shape, i.e., the asymptotic peak shaper0(s) is
exactly the one calculated before for the perfect crystal.
recall that it is a step function in FMT1, while in both FMT
and FMT3 one obtains the same function, which very mu
resembles a Gaussian but decays faster for larges.

The calculation of the constantK is described in the Ap-
pendix and yieldsKFMT250.39 andKFMT350.92. Extrapo-
lation of Eq. ~33! to the melting densityrb* 51.04 gives
xv

FMT153.531025, xv
FMT251.431024, and xv

FMT352.4
31024, all in reasonable agreement with the molecular d
namics result@20#, but in contrast to the previous FMT
estimate 3.531028 @19# which in our opinion is wrong. Fig-
ure 1 compares the vacancy concentration according to
~33! for all three versions with simulation data@20,21#. We
emphasize that the lines are extrapolations of the asymp
behavior and differ from the results of the full DFT, whic
could not be determined for the reasons given above. Th
fore we hesitate to draw conclusions on the relative qua
of the different versions of the theory. The almost perf
FMT3 value at melting is probably fortuitous. Bowles an
Speedy@21# have measured the volume and surface area
cavities in simulated crystals with one~nonequilibrium! va-
cancy. From these data they derived the equilibrium vaca
concentrations shown in Fig. 1. If one uses their formu
with the asymptotic equation of state of Alderet al. @22# one
recovers Eq.~33! for a0→0 with the valueK50.33, which
is quite close to the FMT2 result.

We remark that if the functional is evaluated for a dens
profile with a localized vacancy, as suggested by McRaet
al

in
f

al

.

i-

e

h

-

q.

tic

e-
y
t

of

cy
s

al. @16#, in FMT2 and FMT3 the leading contribution to th
free energy difference between the crystal with and with
the vacancy is the ideal free energy per particle23 lna0 /l
which, together with the configurational entropy;xv ln xv ,
leads to the wrong predictionxv(a0→0);a0

3, corresponding
to a much too slow decay ofxv .
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APPENDIX: CALCULATION OF THE CONSTANT K

The integral over the missing spherical caps of regionA
that have been included in Eq.~29! is

dF1A
cap5224pE

R/2

`

dr r 2S 12
R

2r Df1„nD
(a)~r !…. ~A1!

By using the substitutiont5(r 2s/2)/a and Eqs.~19! and
~20! we get

F1A
cap512E

1/2

`

dt ~ t21/2! n20~ t !ln@12n30~ t !#, ~A2!

whereh0 has been set to 1 because only the leading term
needed.

For the integration over regionB scaled variablesr
5r82/(as) andz5z8/a are used where (r8,z8,f8) is a cy-
lindrical coordinate system centered at the midpoint betw

FIG. 1. Vacancy concentration as function of the free dista
a0. The lines for the three FMT versions are extrapolations of
asymptotic behavior fora0→0, the diamonds@20# and the full line
@21# are simulation results, and the triangle is a theoretical estim
by Schaaf and Reiss@23#. The vertical line denotes the meltin
density; crystals on the left of this line are metastable.
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two sites and with its polar axis directed toward one of the
For spherical density distributions all integrands are indep
dent off8. One easily finds

F1B
005212E

0

`

dzE
0

`

dr@~n20
1 1n20

2 !ln~12n30
1 2n30

2 !

2n20
2 ln~12n30

2 !# ~A3!

with na
65na(t6)5na(1/21r7z). The second term is sub

tracted because it was already included inF1A .
For F2B the vectorsr6 pointing to the neighboring site

are written as

r65S r8cosf8

r8sinf8

z86R/2
D . ~A4!

The angleg between the directions to the two sites is det
mined by cosg5r̂1• r̂252118rd1O(d2) so that @see
Eqs.~20! and ~25!#

n2
22nV2

2 5
4h0

2

a2
$n20~z1!n20~z2!1d@n20~z1!n21~z2!

1n20~z2!n21~z1!24rn20~z1!n20~z2!#%

~A5!

with

z65
r 62s/2

a
5t62r~11r62z!d1•••5t61u6d1•••.

~A6!
te
.
n-

-

Expanding theO(d0) term to first order inxv one obtains

F2B
015224E

0

`

dzE
0

`

dr
n20

1 n20
2

~12n30
1 2n30

2 !2
. ~A7!

The O(d) term for xv50 is

F2B
10524E

0

`

dzE
0

`

drS 2n20
1 n20

2 ~u2n20
2 1u1n20

1 !1n31
1 1n31

2

~12n30
1 2n30

2 !2

1
n20

1 n208
2u21n20

2 n208
1u1

12n30
1 2n30

2 D ~A8!

where n208 (t)5]n20(t)/]t522ptr0(t) and all weighted
densities are evaluated att651/21r7z.

Finally, after more lengthy algebra involving the transfo
mation between the reference frames attached tor1 andr2 ,
we find in FMT3

F3B
005236E

0

`

dzE
0

`

dr
n20

1 n20
2 ~n31

1 1n31
2 !

~12n30
1 2n30

2 !2
. ~A9!

Using the asymptotic profile determined in Ref.@6# numeri-
cal evaluation of Eqs.~A2!, ~A3!, ~A8!, and ~A9! gives the
results for the constantK quoted in the main text. For com
parison, one findsKFMT250.55 and KFMT351.08 for a
Gaussian profile with optimized width.
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